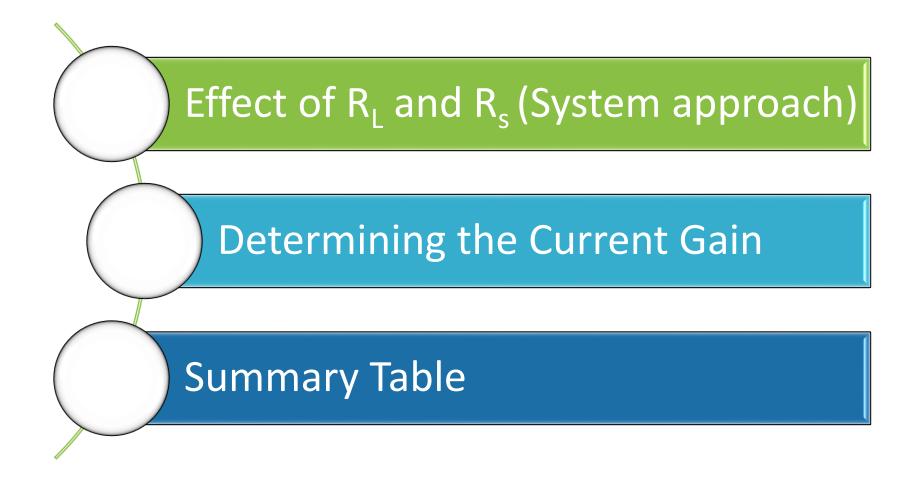
ECE 312 Electronic Circuits (A)


Lec. 8: BJT Modeling and re Transistor Model (small signal analysis) (3)

Instructor

Dr. Maher Abdelrasoul

http://www.bu.edu.eg/staff/mahersalem3

Agenda

Effect of R_L and R_s (System Approach)

Effect of R_L and R_s

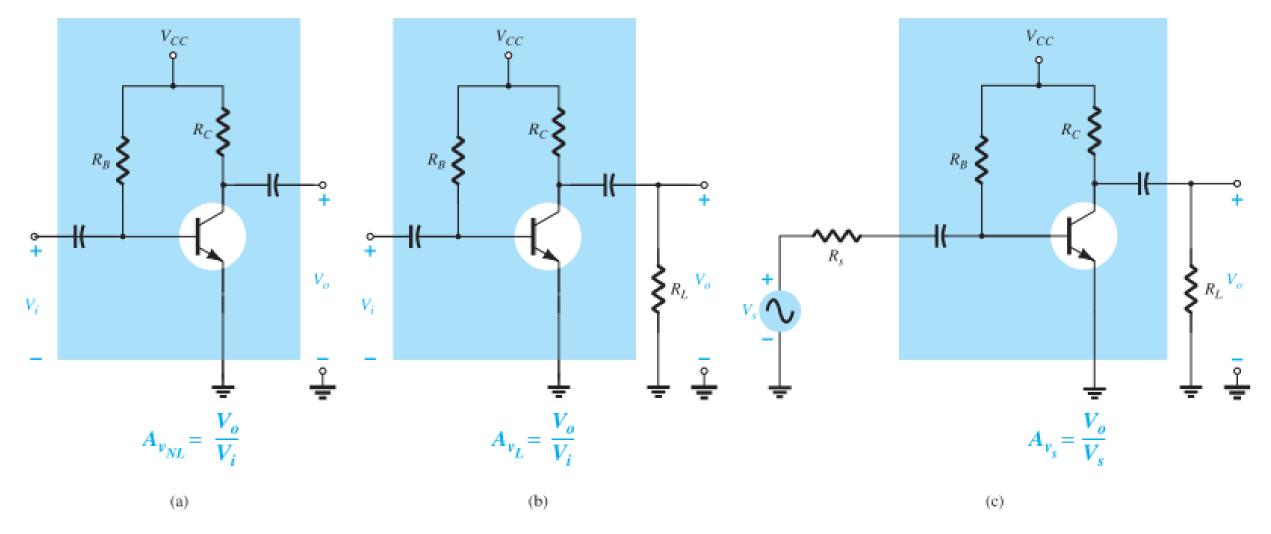
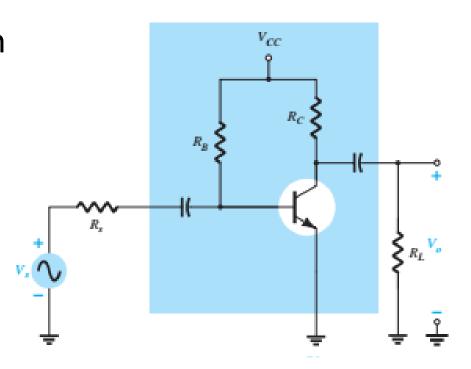



FIG. 5.54

Effect of R_L and R_s

- The loaded voltage gain of an amplifier is always less than the no-load gain.
- The gain obtained with a source resistance in place will always be less than that obtained under loaded or unloaded conditions due to the drop in applied voltage across the source resistance.
- For the same configuration $A_{vNL}>A_{vL}>A_{vS}$.
- RL $\uparrow \rightarrow$ AVS \uparrow
- RS $\downarrow \rightarrow$ AVS \uparrow
- For any network that have coupling capacitors, the source and load resistance do not affect the dc biasing levels.

Effect of R_L and R_s..

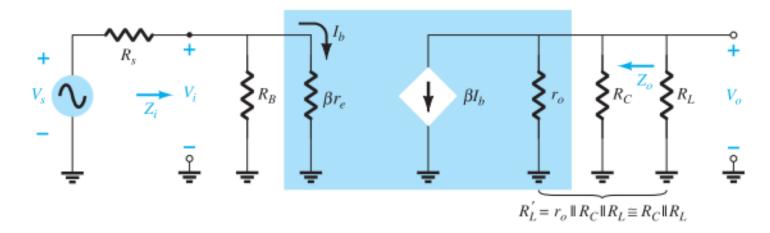
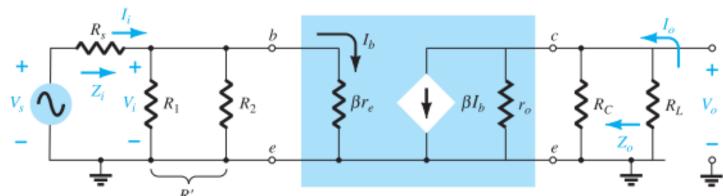
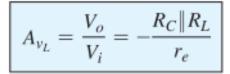


FIG. 5.55

The ac equivalent network for the network of Fig. 5.54c.

$$R'_{L} = r_{o} \| R_{C} \| R_{L} \cong R_{C} \| R_{L}$$

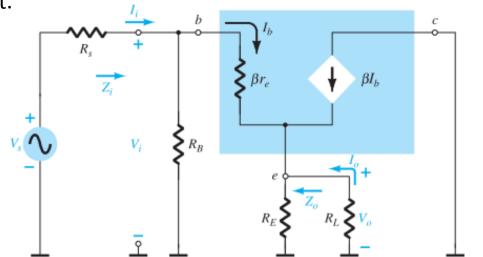

$$V_{o} = -\beta I_{b} R'_{L} = -\beta I_{b} (R_{C} \| R_{L})$$


$$I_{b} = \frac{V_{i}}{\beta r_{e}}$$

$$V_{i} = \frac{Z_{i} V_{s}}{Z_{i} + R_{s}}$$

Effect of R_L and R_s..

Voltage-divider ct.

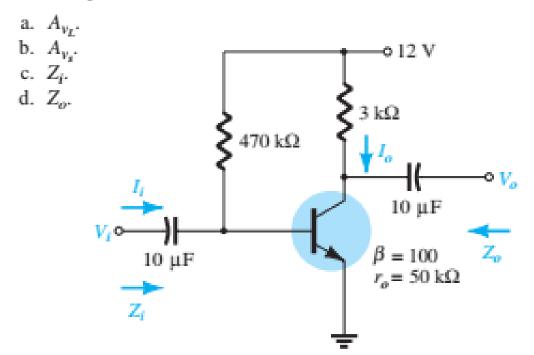


$$Z_i = R_1 \| R_2 \| \beta r_e$$

$$Z_o = R_C \| r_o$$

Emitter-Follower Ct.

$$Z_i = R_B \| Z_b$$


$$Z_b \cong \beta(R_E || R_L)$$

$$Z_o \cong r_e$$

$$A_{\nu_L} = \frac{V_o}{V_i} = \frac{R_E \| R_L}{R_E \| R_L + r_e}$$

Effect of R_L and R_s (Example)

EXAMPLE 5.11 Using the parameter values for the fixed-bias configuration of Example 5.1 with an applied load of 4.7 k Ω and a source resistance of 0.3 k Ω , determine the following and compare to the no-load values:

Solution:

a. Eq. (5.73): $A_{\nu_L} = -\frac{R_C \| R_L}{r_e} = -\frac{3 \text{ k}\Omega \| 4.7 \text{ k}\Omega}{10.71 \Omega} = -\frac{1.831 \text{ k}\Omega}{10.71 \Omega} = -170.98$

which is significantly less than the no-load gain of -280.11.

b. Eq. (5.76): $A_{v_s} = \frac{Z_i}{Z_i + R_s} A_{v_L}$

With $Z_i = 1.07 \text{ k}\Omega$ from Example 5.1, we have

$$A_{\nu_s} = \frac{1.07 \text{ k}\Omega}{1.07 \text{ k}\Omega + 0.3 \text{ k}\Omega} (-170.98) = -133.54$$

which again is significantly less than $A_{\nu_{NL}}$ or A_{ν_L} .

- c. $Z_i = 1.07 \text{ k}\Omega$ as obtained for the no-load situation.
- d. $Z_o = R_C = 3 \text{ k}\Omega$ as obtained for the no-load situation. The example clearly demonstrates that $A_{\nu_{NL}} > A_{\nu_L} > A_{\nu_L}$.

Determining the Current Gain

Determining the Current gain

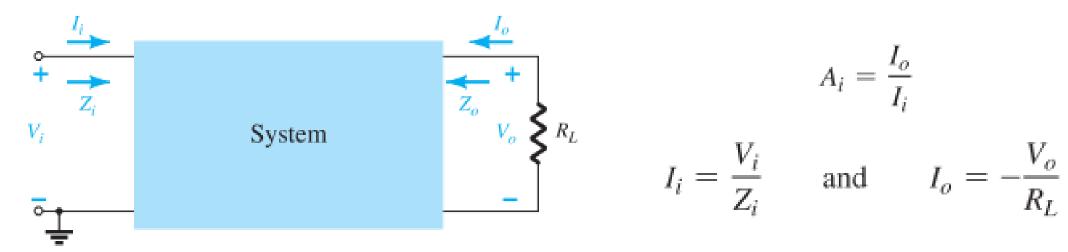


FIG. 5.60

Determining the current gain using the voltage gain.

 For each transistor configuration, the current gain can be determined directly from the voltage gain, the defined load, and the input impedance.

$$A_{i_L} = rac{I_o}{I_i} = rac{-rac{V_o}{R_L}}{rac{V_i}{Z_i}} = -rac{V_o}{V_i} \cdot rac{Z_i}{R_L}$$

$$A_{i_L} = -A_{v_L} \frac{Z_i}{R_L}$$

Summary Table

Configuration	Z_i	Z_o	A_{ν}	A_i
Fixed-bias:	Medium (1 kΩ)	Medium (2 kΩ)	High (-200)	High (100)
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$= R_B \ \beta r_e \ $ $\cong \beta r_e \ $ $(R_B \ge 10 \beta r_e)$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	$= \boxed{-\frac{(R_C \ r_o)}{r_c}}$ $\cong \boxed{-\frac{R_C}{r_c}}$ $(r_o \ge 10R_C)$	$= \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}$ $\cong \boxed{\beta}$ $(r_o \ge 10R_C, R_B \ge 10\beta r_e)$
Voltage-divider	Medium (1 kΩ)	Medium (2 kΩ)	High (-200)	High (50)
bias: R_1 R_2 R_2 R_2 R_3 R_4 R_5 R_6 R_7 R_8	$= \boxed{R_1 \ R_2 \ \beta r_e}$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	$= \boxed{-\frac{R_C \ r_o}{r_c}}$ $\cong \boxed{-\frac{R_C}{r_c}}$ $(r_o \ge 10R_C)$	$= \frac{\beta(R_1 R_2) r_o}{(r_o + R_C)(R_1 R_2 + \beta r_e)}$ $\cong \frac{\beta(R_1 R_2)}{R_1 R_2 + \beta r_e}$ $(r_o \ge 10R_C)$
Unbypassed emitter bias:	High (100 kΩ)	Medium (2 kΩ)	Low (-5)	High (50)
emitter bias: $ \begin{array}{c c} & V_{CC} \\ \hline & I_{i} \\ \hline & V_{i} \\ \hline & Z_{i} \end{array} $	$= R_B \ Z_b$ $Z_b \cong \beta(r_e + R_E)$ $\cong R_B \ \beta R_E$ $(R_E \gg r_e)$	$= \boxed{R_C}$ (any level of r_o)	$= \boxed{-\frac{R_C}{r_e + R_E}}$ $\cong \boxed{-\frac{R_C}{R_E}}$ $(R_E \gg r_e)$	\cong $\left[-\frac{\beta R_B}{R_B + Z_b} \right]$

Configuration	Z_i	Z_o	A_{ν}	A_i
Emitter- follower: V_{CC} $V_{I_{i}}$ $V_{I_{o}}$ $V_{I_{o}}$ $V_{I_{o}}$ $V_{I_{o}}$ $V_{I_{o}}$ $V_{I_{o}}$ $V_{I_{o}}$	High (100 k Ω) $= R_B \ Z_b$ $Z_b \cong \beta(r_e + R_E)$ $\cong R_B \ \beta R_E$ $(R_E \gg r_e)$	Low (20 Ω) $= R_E r_e$ $\cong r_e$ $(R_E \gg r_e)$	$Low (\cong 1)$ $= \frac{R_E}{R_E + r_e}$ $\cong \boxed{1}$	High (-50) $\cong \boxed{-\frac{\beta R_B}{R_B + Z_b}}$
Common-base: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Low (20 Ω) $= R_E r_e$ $\cong r_e$ $(R_E \gg r_e)$	Medium $(2 k\Omega)$ $= R_C$	High (200) $\cong \frac{R_C}{r_e}$	Low (−1) ≅
Collector feedback: R_F V_CC R_F V_CC V	Medium (1 kΩ) $= \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}$ $(r_o \ge 10R_C)$	Medium (2 kΩ) $≅ R_C R_F $ $(r_o ≥ 10R_C)$	High (-200) $\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$ $(R_F \gg R_C)$	High (50) $= \frac{\beta R_F}{R_F + \beta R_C}$ $\cong \frac{R_F}{R_C}$

Configuration	$A_{\nu_L} = V_o/V_i$	Z_i	Z_o
$\begin{array}{c} V_{CC} \\ R_B \\ \hline V_s \\ \hline \end{array}$	$\frac{-(R_L \ R_C)}{r_c}$	$R_B \ \beta r_e$	R_C
	Including r_o :	$R_B \ \beta r_e$	$R_C \ r_o$
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\frac{-(R_L \ R_C)}{r_c}$	$R_1 \ R_2 \ \beta r_e$	R_C
	Including r_o : $\frac{-(R_L R_C r_o)}{r_c}$	$R_1 \ R_2\ \beta r_e$	$R_C \ r_o$

Configuration	$A_{v_L} = V_o/V_i$	\mathbf{Z}_i	Z _o
R_1	≅ 1	$R'_E = R_L R_E$ $R_1 R_2 \beta(r_e + R'_E)$	$R'_{s} = R_{s} R_{1} R_{2}$ $R_{E} \left(\frac{R'_{s}}{\beta} + r_{e}\right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R_s'}{\beta} + r_e \right)$
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\cong \frac{-(R_L \ R_C)}{r_e}$	$R_E \ r_e$	R_C
	Including r_o : $\cong \frac{-(R_L R_C r_o)}{r_e}$	$R_E \ r_e$	$R_C \ r_o$
V_{CC} R_1 R_C	$\frac{-(R_L R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_E)$	R_C
$ \begin{array}{c c} R_{s} & V_{l} \\ \downarrow V_{s} & \downarrow \\ \hline \end{array} $ $ \begin{array}{c c} R_{s} & \downarrow V_{l} \\ \downarrow Z_{l} & \downarrow R_{2} \\ \hline \end{array} $ $ \begin{array}{c c} R_{L} & \downarrow R_{L} \\ \hline \end{array} $	Including r_o : $\frac{-(R_L R_C)}{R_E}$	$R_1 \ R_2\ \beta(r_e + R_e)$	$\cong R_C$

Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z _o
V_{CC} R_{B} R_{C} V_{CC} V_{CC} V_{CC} V_{CC} V_{CC}	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_B \ \beta(r_e + R_{E_1})$	R_C
$\begin{array}{c c} + & & \\ \hline V_s & & \\ \hline \end{array}$ R_{E_1} R_{E_2} R_{E_2} R_{E_2}	Including r_o : $\frac{-(R_L R_C)}{R_{E_t}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$
V_{CC} R_F R_C	$\frac{-(R_L \ R_C)}{r_e}$	$\beta r_e \ \frac{R_F}{ A_v }$	R_C
$\begin{array}{c c} & & & \\ & & $	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$\beta r_e \ \frac{R_F}{ A_v }$	$R_C \ R_F\ r_o$
V_{CC} R_F R_C R_C R_C	$\frac{-(R_L \! \! R_C)}{R_E}$	$\beta R_E \left\ \frac{R_F}{\left A_v \right } \right\ $	$\cong R_C R_F$
$\begin{array}{c c} R_{s} & V_{i} \\ V_{s} & & \\ \hline \end{array}$ $\begin{array}{c c} R_{s} & V_{i} \\ \hline \end{array}$ $\begin{array}{c c} R_{E} & & \\ \hline \end{array}$	Including r_o : $\cong \frac{-(R_L R_C)}{R_E}$	$\cong \beta R_E \ \frac{R_F}{ A_v }$	$\cong R_C R_F$

